
Dynamic JCL Generation
This subsection covers the following topics:

General
Example 1: Dynamic JCL in an OS/390 Environment
Example 2: Dynamic JCL in a BS2000/OSD Environment
Example 3: Dynamic JCL in a UNIX Environment

General
When defining a job within a network, a user can specify that its JCL is to be generated dynamically either at job
activation time or at job submission time.

Dynamic JCL generation is achieved using the Entire Operations MACRO facility, an extension of the Natural
programming language. This facility consists of standard Natural statements and text strings (JCL frames). The text
strings can contain Natural escape characters followed by variables that will be replaced by their current value during
dynamic generation.

These current values will be taken from the so called "Symbol Tables", which are user-defined tables defining the
escape characters and variable names used in the MACRO facility, as well as the current values to be substituted.
The symbol table to be used is specified in the job definition screen.

If any symbol specified in the dynamic JCL is not in the symbol table indicated for the job, the symbol is searched
for at substitution time (either activation or execution) in the symbol table(s) belonging to owner SYSDBA. A user
can define any number of entries in a single symbol table or any number of symbol tables.

Additionally, Entire Operations passes standard variables defined in the parameter section to the dynamically
generated program, such as job owner, network name, current job name and original scheduling date. The same
applies to Natural system variables such as DATE, TIME and USER. As these parameters can be replaced in any
part of the JCL, different JCL configurations can be generated depending on time, date, user ID etc.

For more information concerning the editing of jobs of type MAC, see the subsection Editing JCL of MAC (Macro)
Jobs.

Entire Operations provides dynamic JCL generation for all supported platforms (OS/390, VSE/ESA, BS2000/OSD,
UNIX) as shown in the following examples:

Example 1: Dynamic JCL in an OS/390 Environment
Example 2: Dynamic JCL in a BS2000/OSD Environment
Example 3: Dynamic JCL in a UNIX Environment

Example 1: Dynamic JCL in an OS/390 Environment
The following is the symbol table specified for the MACRO program:

Symbol Name Current Value

STEPLIB SN.SYSF.SOURCE

CLASS G

1Copyright Software AG 2001

Dynamic JCL GenerationDynamic JCL Generation

The variable from the parameter section is assumed to have the following value:

P-OWNER NET1

The system variables are assumed to have the following values:

*TPSYS COMPLETE

*DEVICE BATCH

*INIT-USER SN

The following is a Natural MACRO program including a parameter section and JCL with the Natural escape
character (paragraph sign #) followed by variable names from the symbol table.

DEFINE DATA PARAMETER USING NOPXPL-A
LOCAL /* MUST BE CODED
END-DEFINE
//SNMAC4 JOB ,#P-OWNER,MSGCLASS=X,CLASS=#CLASS //STEP01 EXEC
PGM=NOPCONTI,PARM=’C0004’ //STEPLIB DD DISP=SHR,DSN=#STEPLIB
//* DEVICE: *DEVICE, INIT-USER: *INIT-USER //* TPSYS: *TPSYS
IF CLASS = ’G’
//* THE MSGCLASS IS REALLY ’G’
ELSE
//* ANOTHER MSG-CLASS FOUND
END-IF
//*

The resulting dynamically generated JCL will be:

//SNMAC4 JOB ,NET1,MSGCLASS=X,CLASS=G
//STEP01 EXEC PGM=NOPCONTI,PARM=’C0004’ //STEPLIB DD
DISP=SHR,DSN=SN.SYSF.SOURCE //* DEVICE: BATCH, INIT-USER: SN
//* TPSYS: COMPLETE
//* THE MSGCLASS IS REALLY ’G’
//*

Example 2: Dynamic JCL in a BS2000/OSD Environment
The fields taken from the DB-INFO are assumed to have the following values after the FIND statement:

Field Value

NUCLEUS 055

LP1 1000

NU1 100

ACCOUNT EXAMPLE

NH1 4000

MSG FHL

VERSION 524

Copyright Software AG 20012

Dynamic JCL GenerationExample 2: Dynamic JCL in a BS2000/OSD Environment

The variables taken from the parameter section have the following current values:

Variable Value

P-OWNER OS

P-JOB NUC055

P-EXECUTION-NODE 055

No symbol table was defined for this example job.

The following is the example JCL written using the Natural MACRO facility, including variables to be substituted
from the DB-INFO view and the parameter section. Variables are preceded by the escape character paragraph sign #.

DEFINE DATA PARAMETER USING NOPXPL-A
1 L-JOB
1 REDEFINE L-JOB
2 L-JOB-A (A3)
2 L-JOB-NUC (N3)
LOCAL /* LOCAL VARIABLES START HERE
1 DB-INFO VIEW OF DB-INFO
2 NUCLEUS
2 LP1
2 NU1
2 ACCOUNT
2 NH1
2 MSG
2 VERSION /* E.G. 524
1 LWP (N7)
1 NUC (N3)
1 SPOOL (A10) INIT <’NOSPOOL’>
END-DEFINE
*
MOVE P-JOB TO L-JOB-A
MOVE P-EXECUTION-NODE TO NUC
F1. FIND DB-INFO WITH NUCLEUS = NUC
/.NUC NUC LOGON #P-OWNER,#ACCOUNT
/OPTION MSG=#MSG
/REMARK
/REMARK NUCLEUS #NUC
/REMARK
/SYSFILE SYSLST = NUC NUC..LST.NUC
/SYSFILE SYSDTA = SYSCMD
/FILE ADA VERSION..MOD,LINK=DDLIB
/FILE *DUMMY,LINK=DDLOG
/FILE *DUMMY,LINK=DDSIBA
/FILE ADA NUC..ASSO,LINK=DDASSOR1,SHARUPD=YES
/FILE ADA NUC..DATA,LINK=DDDATAR1,SHARUPD=YES
/FILE ADA NUC..WORK,LINK=DDWORKR1,SHARUPD=YES
/EXEC (ADARUN,ADA VERSION..MOD)
COMPUTE LWP = F1.LP1 * (F1.NU1 + 100)
ADARUN PROG=ADANUC,LP=F1.LP1,LU=65535,LWP=#LWP ADARUN
DB=#NUC,NU=#NU1,NC=20,TT=600,TNAE=1800 ADARUN NH= NH1
/SYSFILE SYSLST = (PRIMARY)
/SYSFILE SYSDTA = (PRIMARY)
/SYSFILE SYSOUT = (PRIMARY)
/LOGOFF SPOOL
END-FIND

3Copyright Software AG 2001

Example 2: Dynamic JCL in a BS2000/OSD EnvironmentDynamic JCL Generation

The resulting dynamically generated JCL will be:

/.NUC055 LOGON OS,EXAMPLE
/OPTION MSG=FHL
/REMARK
/REMARK NUCLEUS 055
/REMARK
/SYSFILE SYSLST = NUC055.LST.NUC
/SYSFILE SYSDTA = SYSCMD
/FILE ADA524.MOD,LINK=DDLIB
/FILE *DUMMY,LINK=DDLOG
/FILE *DUMMY,LINK=DDSIBA
/FILE ADA055.ASSO,LINK=DDASSOR1,SHARUPD=YES
/FILE ADA055.DATA,LINK=DDDATAR1,SHARUPD=YES
/FILE ADA055.WORK,LINK=DDWORKR1,SHARUPD=YES
/EXEC (ADARUN,ADA524.MOD)
ADARUN PROG=ADANUC,LP=1000,LU=65535,LWP=200000 ADARUN
DB=055,NU=100,NC=20,TT=600,TNAE=1800 ADARUN NH=4000
/SYSFILE SYSLST = (PRIMARY)
/SYSFILE SYSDTA = (PRIMARY)
/SYSFILE SYSOUT = (PRIMARY)
/LOGOFF NOSPOOL

Note:
Any JCL generated at activation time using the MACRO language can be modified by the user until the job is
actually submitted. Of course this modification is valid only for the current network run.

Example 3: Dynamic JCL in a UNIX Environment
The following example illustrates dynamic symbol replacement within a Bourne shell script (escape character §):

#
Bourne shell script for checking the number of users
entered in /etc/passwd.
If more than §USER-LIMIT entries appear,
the script will be ended with exit 1.
#
#!/bin/sh
set -x
USER_COUNT=’wc -l < /etc/passwd’
echo Number of users on node ’hostname’ : $USER_COUNT
if test $USER_COUNT -gt §USER-LIMIT
then
 echo USER_COUNT_WARN
 exit 1
else
 echo USER_COUNT_OK
fi

The symbol table to be used should appear as follows:

Symbol Name Current Value

USER-LIMIT 100

Copyright Software AG 20014

Dynamic JCL GenerationExample 3: Dynamic JCL in a UNIX Environment

The result is the following executable shell script:

#
Bourne shell script for checking the number of users
entered in /etc/passwd.
If more than 100 entries appear,
the script will be ended with exit 1.
#
#!/bin/sh
set -x
USER_COUNT=’wc -l < /etc/passwd’
echo Number of users on node ’hostname’ : $USER_COUNT
if test $USER_COUNT -gt 100
then
 echo USER_COUNT_WARN
 exit 1
else
 echo USER_COUNT_OK
fi

Note:
Any JCL generated at activation time using the Natural MACRO language can be modified by the user until the job
is actually submitted. Of course this modification is valid only for the current network run.

5Copyright Software AG 2001

Example 3: Dynamic JCL in a UNIX EnvironmentDynamic JCL Generation

	Dynamic JCL Generation
	General
	Example 1: Dynamic JCL in an OS/390 Environment
	Example 2: Dynamic JCL in a BS2000/OSD Environment
	Example 3: Dynamic JCL in a UNIX Environment

